

The SwiftRNG Pro is a Hardware Random Number Generator that can produce high-quality, true random numbers at a rate of 210 Mbit/s. Manufactured as a USB device, it's compatible with most server oriented operating systems and hardware platforms. Through provided software API, multiple SwiftRNG Pro devices can be clustered together to multiply the resulting generation performance. It is designed to comply with NIST SP 800-90B: "Recommendation for the Entropy Sources Used for Random Bit Generation".

Core capabilities

- Generation performance 210 Mbit/s generation speed through a USB 2.0 High Speed interface.
- Device cluster scalability and fail-over capabilities through provided software API on Linux, Windows, and macOS platforms.
- Windows 10/11 (64-bit), Windows Server 2016/2019 (64-bit) compatibility through provided Entropy Server application and software API.
- Device API enables independent security testing and validation of the entropy source in compliance with NIST SP 800-90B.
- Optional post processing methods available SHA-256, SHA-512, XorShift64.
- Real-time validation of each noise source and entropy output provides confidence of device operation correctness.
- On-demand built-in diagnostics that can be triggered through device API and software API.

Description

The core functionality of the SwiftRNG Pro device relies on two identical electrical circuits that utilize avalanche breakdown effect in reversed-biased Zener diodes and serve as independent noise sources. The avalanche breakdown effect in reversed-biased Zener diodes is observed at above 6-8 volts and the electrical noise generated in such components is strong enough and has random characteristics. The electrical noise from the noise sources is digitized into separate byte streams and inspected using build-in health diagnostics. The resulting random byte streams are then combined by applying logical operations (mostly XOR and Shift) to produce a final output stream. The final random bytes produced by the SwiftRNG Pro have excellent random characteristics, extremely low BIAS and does not require any additional whitening processing. A build-in diagnostics ensures continuous quality and health monitoring of the noise sources. A monitoring logic checks the quality of the random bytes produced by continuously running 'Repetition Count Test' and 'Adaptive Proportion Test' tests through a provided SwiftRNG Software API.

It's possible to use two or more SwiftRNG Pro devices to additively increase the random number generation speed. The software API seamlessly integrates multiple devices and uses them concurrently as a single stream of random data.

Supported systems

- Linux (x86, x64) data access provided through provided software API or utilities on Ubuntu, Red Hat, CentOS, FreeBSD and other Linux based x86-64 systems.
- macOS 11.6.1+ (Intel and M1) data access provided through software API or program utilities.
- Windows 10/11/2016/2019 (64 bit) data access provided through software API, DLL, Entropy Server application or program utilities.

Applications

The SwiftRNG Pro is a versatile device that can be used for a wide range of purposes including but not limited to:

- Cryptography
- Authentication
- Payment services
- Secure key generation
- Research (statistical sampling)
- Computer simulations
- Gaming and lotteries

Product Specifications

Product name	SwiftRNG Pro	
Interface	USB 2.0 high-speed interface with EMI filtering	
Entropy final output	Download speed: 210 Mbit/s	
	Entropy score: full entropy	
Noise source	Two independent circuits based on avalanche breakdown effect in	
	reversed-biased Zener diodes	
Health tests	Start-up and continuous health diagnostics of random noise sources.	
	Continuous 'Repetition Count' and 'Adaptive Proportion' statistical tests	
	through provided SwiftRNG Software API.	
NIST compliance	NIST SP 800-90B	
Validation tests	Diehard, Dieharder, NIST, Rngtest, Crush, BigCrush and Ent	
Supported systems	Linux, macOS and Windows 10/11 (64-bit), Windows Server	
	2016/2019 (64-bit)	
Data interface software	Software API and utilities with a complete source code available for	
	Windows, macOS, FreeBSD, and Linux.	
Power consumption	Draws no more than 218 mA in active mode, 100 mA when inactive	
Enclosure material	ABS	
Weight	Less than 22 grams (0.77 Oz)	
Dimensions	78mm * 23mm * 14mm	
RoHS compliance	All parts and materials are RoHS compliant	
Average EMF emission	Less than 1 µW/m² measured at the surface of the device	
Device security	Secure booting from an encrypted firmware image, device access and debugging disabled	

Patents

US Patent 9,477,443 issued – "Method and apparatus of entropy source with multiple hardware random noise sources and continuous self-diagnostic logic".

Operating Temperatures

- Maximum device operating temperature: 149°F (65°C). The temperature is measured on the bottom surface of the device in the middle area.
- Maximum ambient temperature: 81°F (27° C). The connected device should be located at least 1 inch away from other USB devices in an area with a free or forced air flow circulation.

User Notes

- The SwiftRNG Pro device can be plugged into one of the available USB 2.0 or 3.0 ports directly or by use of a USB 2.0 'A' male to 'A' female extension cable (extension cable not included).
- Do not immerse this product in any liquid or expose it to direct sunlight or a high temperature environment.
- The software installation and configuration instructions can be found online at this link: https://tectrolabs.com/docs/swiftrng/

Device API Specifications

The SwiftRNG Pro device API is implemented using a USB High Speed interface utilizing bulk data transfers. It operates based on 1-byte commands. We recommend using the supplied software kit, as it reduces the complexity and simplifies the use of the generator. The following table contains the complete command set and descriptions.

Command	Response	Description
'x'	16,000 random bytes + the status byte	The response will contain 16,000 low biased (RAW) random bytes and an additional byte for the status byte. The status byte will contain 0 value for success or error code.
'm'	8 bytes of the device model + the status byte	The response will contain 8 bytes for the device model as ASCII codes. The status byte will contain 0 value for success or error code.
'V'	4 bytes of the device version + the status byte	The response will contain 4 bytes for the device version as ASCII codes. The status byte will contain 0 value for success or error code.
's'	15 bytes of the device serial number + status byte	The response will contain 15 bytes for the device serial number as ASCII codes. The status byte will contain 0 value for success or error code.
'f'	512 bytes that represent frequency tables of the noise sources + the status byte	The first 256 bytes are frequency table of the first noise source and the next 256 bytes are frequency table of the second noise source. The status byte will contain 0 value for success or error code.
'<'	16,000 random bytes + the status byte	The response will contain 16,000 of RAW unprocessed and unmodified random bytes generated from the first noise source. The status byte will contain 0 value for success or error code.
'>'	16,000 random bytes + the status byte	The response will contain 16,000 of RAW unprocessed and unmodified random bytes generated from the second noise source. The status byte will contain 0 value for success or error code.
ʻd'	Status byte	The command will trigger the built-in device diagnostics. The status byte will contain 0 value for success or error code.

One-Year Limited Warranty: TectroLabs offers a 1-year limited warranty and an optional 3-year extended warranty on the SwiftRNG Pro. We will repair or replace any device that fails due to any defects in materials or manufacturing. The SwiftRNG Pro device may be returned within 30 days of purchase for a full refund minus the credit card processing charge (the buyer pays for the return shipping).